

## **Edexcel International Chemistry A Level CP15** - Analysis of Some Inorganic and Organic Unknowns (A level only)

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

**DOG PMTEducation** 







#### Describe the test for carbonate ions (Year 1 content, see CP8)







Describe the test for carbonate ions (Year 1 content, see CP8)

Add aqueous acid and pass the gaseous product through limewater. If a white precipitate forms and the limewater turns cloudy, carbonate ions were present ( $CO_2$  was the gas produced).

**D PMTEducation** 

This test is the same for  $HCO_3^-$  ions

www.pmt.education





#### Describe the test for SO<sub>4</sub><sup>2-</sup> ions (Year 1 content, see CP8)







# Describe the test for SO<sub>4</sub><sup>2-</sup> ions (Year 1 content, see CP8)

Add acidified barium chloride solution. A white precipitate of barium sulfate will form if  $SO_4^{2-}$  ions are present.







#### Describe the test for halide ions (Year 1 content, see CP8)







#### Describe the test for halide ions (Year 1 content, see CP8)

Add a few drops of nitric acid followed by a few drops of silver nitrate. Observe the colour of the precipitate and test solubility in ammonia solution:

**D PMTEducation** 

AgCl - white ppt, soluble in dilute  $NH_3$ AgBr - cream ppt, soluble in concentrated  $NH_3$ Agl - yellow ppt, insoluble in  $NH_3$ 

www.pmt.education





#### What order should the anion tests be done in? Why? (Year 1 content, see CP8)







What order should the anion tests be done in? Why? (Year 1 content, see CP8)

- Carbonate, sulfate, halide
- The presence of carbonate ions may give false positive results for the other tests.







#### Describe the test for carbon dioxide (Year 1 content, see CP8)







Describe the test for carbon dioxide (Year 1 content, see CP8)

Pass the gas through limewater. If a white precipitate forms in the limewater turning it cloudy,  $CO_2$  is present.







#### Describe the test for oxygen (Year 1 content, see CP8)







#### Describe the test for oxygen (Year 1 content, see CP8)

## Insert a glowing splint into a test tube of the gas. If oxygen is present, the splint will relight.







#### Describe how to carry out the flame test (Year 1 content, see CP8)







Describe how to carry out the flame test (Year 1 content, see CP8)

- Clean a nichrome wire by dipping it in concentrated HCl and placing it in a bunsen burner flame
- 2. Dip the wire in the unknown compound and place in the Bunsen flame
- 3. Observe the colour of the flame







#### What colour is the flame test for lithium? (Year 1 content, see CP8)







# What colour is the flame test for lithium? (Year 1 content, see CP8)









## What colour is the flame test for sodium? (Year 1 content, see CP8)







#### What colour is the flame test for sodium? (Year 1 content, see CP8)

#### Yellow







#### What colour is the flame test for potassium? (Year 1 content, see CP8)







# What colour is the flame test for potassium? (Year 1 content, see CP8)

#### Lilac







#### What colour is the flame test for rubidium? (Year 1 content, see CP8)







# What colour is the flame test for rubidium? (Year 1 content, see CP8)

## Red (red-violet)







#### What colour is the flame test for caesium? (Year 1 content, see CP8)







# What colour is the flame test for caesium? (Year 1 content, see CP8)

#### **Blue-violet**







#### What colour is the flame test for calcium? (Year 1 content, see CP8)







# What colour is the flame test for calcium? (Year 1 content, see CP8)

## Orange-red







#### What colour is the flame test for strontium? (Year 1 content, see CP8)







# What colour is the flame test for strontium? (Year 1 content, see CP8)

#### Red







## What colour is the flame test for barium? (Year 1 content, see CP8)







# What colour is the flame test for barium? (Year 1 content, see CP8)

## Pale green







#### Describe the test for alkenes (Year 1 content, see CP8)







#### Describe the test for alkenes (Year 1 content, see CP8)

# Add bromine water. If an alkene is present, the bromine water will change from orange to colourless.







#### Describe the test for halogenoalkanes (Year 1 content, see CP8)







#### Describe the test for halogenoalkanes (Year 1 content, see CP8)

Hydrolyse the halogenoalkane to release the halide ions (see CP5 for full method). Add silver nitrate then test precipitate

with ammonia solution:

- AgCI white ppt soluble in dilute ammonia
- AgBr cream ppt soluble in concentrated ammonia AgI - yellow ppt insoluble in ammonia







#### Describe the test for alcohols (Year 1 content, see CP8)







### Describe the test for alcohols (Year 1 content, see CP8)

React with potassium dichromate in dilute sulfuric acid:

- Primary alcohol if the reagents are distilled, an aldehyde forms. If the products are refluxed, a carboxylic acid is produced
- Secondary alcohol if the reagents are refluxed, a ketone is produced
- Tertiary alcohols cannot be oxidised

When the alcohol is oxidised, there is a colour change from orange to green.







### Describe the test for carboxylic acids (Year 1 content, see CP8)







Describe the test for carboxylic acids (Year 1 content, see CP8)

Add sodium carbonate or sodium hydrogencarbonate. If the solution effervesces, a carboxylic acid is present.





### Describe the test for aldehydes







### Describe the test for aldehydes

- Add Benedict's reagent. If an aldehyde is present, the blue solution will turn cloudy green, orange and then red.
- Add Fehling's solution. If an aldehyde is present, a brick-red precipitate will form in the blue solution.
- Add Tollens' reagent. If an aldehyde is present, a silver mirror will form on the wall of the test tube.
- Add acidified potassium dichromate(VI). If an aldehyde is present, there will be a colour change from orange to green. (This colour change is also observed with primary and secondary alcohols).







### Describe the test for phenol







### Describe the test for phenol

### Add bromine water. If phenol is present, there will be a colour change from orange to colourless and a white precipitate will form.







### After test-tube reactions have been completed, what further evidence could be used to identify an organic compound?







After test-tube reactions have been completed, what further evidence could be used to identify an organic compound? Mass spectrum

Infrared spectrum

### NMR spectrum







### Briefly describe how a mass spectrum can be used to identify an organic compound (Year 1 content, see CP8)







Briefly describe how a mass spectrum can be used to identify an organic compound (Year 1 content, see CP8) m/z ratio of the molecular ion peak shows the relative formula mass.

m/z ratios of the fragment ions can be used to work out the different fragment ions formed from the compound.





### Briefly explain how an infrared spectrum can be used to identify an organic compound (Year 1 content, see CP8)







Briefly explain how an infrared spectrum can be used to identify an organic compound (Year 1 content, see CP8) The wavenumber of the peaks can be compared to the data book to identify which bonds are present in the compound. This is because each bond absorbs a unique frequency of infrared radiation which causes the bond to vibrate (stretch or bend).



D

PMTEducation



## What does a <sup>13</sup>C spectrum tell you about a compound?







What does a <sup>13</sup>C spectrum tell you about a compound?

The chemical shift values can be compared with a data book to identify the types of carbon environment in a molecule
The number of peaks represents the

number of different carbon environments







### What does a proton NMR tell you about a compound?







### What does a proton NMR tell you about a compound?

- The chemical shift values can be compared with a data book to identify the types of proton environment in a molecule
- The number of peaks represents the number of different proton environments
- The relative peak areas show the relative number of protons in each environment
- The splitting pattern shows the number of adjacent non-equivalent protons







### What is the n+1 rule?







#### What is the n+1 rule?

## The number of peaks in the splitting pattern is equal to the number of adjacent non-equivalent protons + 1







### Name the first 4 splitting patterns that appear on proton NMR spectra. Use the n+1 rule to explain what they mean







## Name the first 4 splitting patterns that appear on proton NMR spectra. Use the n+1 rule to explain what they mean

| Multiplet name | Number of<br>peaks (n+1) | Number of adjacent protons (n) |
|----------------|--------------------------|--------------------------------|
| Singlet        | 1                        | 0                              |
| Doublet        | 2                        | 1                              |
| Triplet        | 3                        | 2                              |
| Quartet        | 4                        | 3                              |

www.pmt.education







# What are the ratios of peak heights in the following splitting patterns on a proton NMR spectrum: doublet, triplet and quartet?







What are the ratios of peak heights in the following splitting patterns on a proton NMR spectrum: doublet, triplet and quartet?

Doublet - 1:1

Triplet - 1:2:1

Quartet - 1:3:3:1







# Describe the observations of the reactions of $Cr^{3+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq)







### Describe the observations of the reactions of $Cr^{3+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq) NaOH - green precipitate forms, dissolves in excess to form green solution of $[Cr(OH)_{e}]^{3-1}$ NH<sub>3</sub> - green precipitate forms, dissolves in excess to form green solution of $[Cr(NH_3)_6]^{3+}$







# Describe the observations of the reactions of $Mn^{2+}(aq)$ with NaOH(aq) and $NH_3(aq)$







### Describe the observations of the reactions of $Mn^{2+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq) NaOH - white precipitate forms (darkens in air), insoluble in excess NH<sub>3</sub> - white precipitate forms (darkens in air), insoluble in excess







# Describe the observations of the reactions of Fe<sup>2+</sup>(aq) with NaOH(aq) and $NH_3(aq)$







### Describe the observations of the reactions of $Fe^{2+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq) NaOH - dark green precipitate forms (turns orange in air), insoluble in excess NH<sub>3</sub> - dark green precipitate forms (turns orange in air), insoluble in excess





# Describe the observations of the reactions of Fe<sup>3+</sup>(aq) with NaOH(aq) and $NH_3(aq)$







### Describe the observations of the reactions of $Fe^{3+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq) NaOH - brown precipitate forms, insoluble in excess NH<sub>3</sub> - brown precipitate forms, insoluble in excess

**D PMTEducation** 

www.pmt.education





# Describe the observations of the reactions of $Co^{2+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq)







- Describe the observations of the reactions of Co<sup>2+</sup>(aq) with NaOH(aq) and NH<sub>3</sub>(aq) NaOH - blue precipitate forms (turns pink on standing), insoluble in excess
- $NH_3$  blue precipitate forms (turns pink on standing), dissolves in excess to form a brown solution of  $[Co(NH_3)_6]^{2+}$

**D G G S PMTEducation** 

www.pmt.education





# Describe the observations of the reactions of Ni<sup>2+</sup>(aq) with NaOH(aq) and $NH_3(aq)$







# Describe the observations of the reactions of Ni<sup>2+</sup>(aq) with NaOH(aq) and NH<sub>3</sub>(aq) NaOH - green precipitate forms, insoluble in excess

 $NH_3$  - green precipitate forms, dissolves in excess to form a blue solution of  $[Ni(NH_3)_6]^{2+}$ 







# Describe the observations of the reactions of $Cu^{2+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq)







### Describe the observations of the reactions of $Cu^{2+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq) NaOH - blue precipitate forms, insoluble in excess (slightly deeper blue colour seen) NH<sub>3</sub> - blue precipitate forms, dissolves in excess to form blue solution of $[Cu(NH_3)_4(H_2O)_2]^{2+}$





# Describe the observations of the reactions of $Zn^{2+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq)







### Describe the observations of the reactions of $Zn^{2+}(aq)$ with NaOH(aq) and NH<sub>3</sub>(aq) NaOH - white precipitate forms, dissolves in excess to form a colourless solution of $[Zn(OH)_{A}]^{2-}$

 $NH_3$  - white precipitate forms, dissolves in excess to form a colourless solution of  $[Zn(NH_3)_4]^{2+}$ 

